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Abstract

This study presents the methodology as well as a quantitative analysis of the influence of social and 
economic factors, namely GDP, population, economic growth rate, urbanization rate, and industrial structure 
on CO2 emissions as a result of energy consumption in the 101 counties of Inner Mongolia’s industrial 
sector based on a geographically weighted regression model (GWR) and geographical information systems 
(GIS) from the perspectives of energy and environmental science. The results show significant differences 
in the measured CO2 emission levels among different counties. Utilizing the GWR method (which was 
tested on the smallest scale that has been published thus far), the relationship between CO2 emissions and 
these five explanatory variables produced an overall model fit of 99%. The GWR results showed that the 
parameters of variables in the GWR varied spatially, suggesting that the influencing factors had different 
effects on the CO2 emissions among the various counties. Overall, population, GDP, and urbanization rates 
positively affect CO2 emissions, industrial structure, and economic growth rate, and affect CO2 emissions 
both positively and negatively. We also characterize the fact that varying industrial structures and economic 
growth rates result in different effects on the CO2 emission of various regions.
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Introduction 

In the 21st century, global climate change has become 
an increasingly serious issue. Carbon emissions are 
mainly attributed to elevated global warming as well as 
other greenhouse gases. Yet all the while, reducing CO2 
emissions and maintaining stable economic growth has 
not only given rise to heated debate but has also been 
one of the major concerns of energy and environmental 
protection policies in all corners of the world [1]. The 
industrial sector in Inner Mongolia Province, as one of 
the three high-energy consumption sectors (construction, 
transportation, and production), faces a devastating 
resource and environmental challenge. Industrial energy 
consumption has occupied roughly 40% of overall global 
energy use [2]. However, the Chinese government has 
promised to reduce CO2 emission intensity 40-45% by 
2020 as compared to the 2005 levels at the COP15 United 
Nations Climate Change Conference [3]. Thus, it is urgent 
for academics and practitioners to intensively assess energy 
consumption CO2 emissions all over the world – especially 
in rapidly developing countries [4]. However, in order 
to achieve the carbon emission reduction targets in the 
Inner Mongolia autonomous region, we need to conduct 
a scientific analysis of the province’s (municipalities 
and autonomous regions) characteristics and regional 
differences in CO2 emissions, economic development, 
industrial structure, and energy efficiency, and the need 
to investigate the spatial and temporal characteristics of 
Inner Mongolia CO2 emissions, potential influencing 
factors, and how to develop a low-carbon economy [5]. 
According to literature, the Logarithmic Mean Divisia 
Index (LMDI) and Stochastic Impacts by Regression on 
Population, Affluence, and Technology (STIRPAT) have 
been widely used recently in the fields of energy and 
environmental research [6-11]. However, all these studies 
focus on CO2 emissions at the global and national levels 
rather than at the county level. In particular, their main 
objective is to develop an effective formula and model 
to estimate the total amount of CO2 emissions but failed 
to explore the influencing factors and to better inform 
responsible politicians for the specific climate of political 
decisions regarding Inner Mongolian policies.

In previous studies, the relationship between CO2 
emissions and socio-economic factors obtained by OLS 
was for the whole study area and represented the average 
situation, assuming that the relationship does not change 
over space [11]. However, this assumption is not true 
when we compared the results from different studies. The 
traditional regression techniques estimate a single set of 
spatial trend parameters for all locations, which ignores 
localized differences across data points. Geographically 
weighted regression, which was proposed by geographers 
Brunsdon et al. [12] and fully described by Fotheringham 
et al. [13], is essentially a spatially weighted estimation of 
regression coefficients, repeated across space, with each 
(weighted) regression centered on a point in the data set. 
Compared with some new statistical models such as the 
linear mixed model, generalized additive model, multi-

layer perception neural network, and radial basis function 
neural network, the GWR model can estimate regression 
coefficients at any one spatial location, and it produces 
better predictive performance for the response variable. 
The GWR model has become increasingly popular in 
the fields of geography, environment, and energy. The 
geographically weighted regression (GWR) proposed by 
Brunsdon et al. [12] is a local regression model that can 
examine non-stationary relationships between dependent 
and explanatory variables across the study area and 
improve the spatial accuracy of the regression model by 
calibrating errors of global models at different locations. 

The dependent and explanatory variables at the 
county level are aggregated at a different spatial range as 
compared to the national level. In addition, the residuals of 
the GWR model have more desirable spatial randomness 
than those derived from other models [14]. Geographically 
weighted regression was specifically designed to deal 
with the spatial non-stationarity of regression coefficients 
between the target variable and explanatory variables 
by measuring those coefficients using local data [15]. In 
addition to its prediction capabilities, GWR produces a 
suite of parameter estimates over space (one set for each 
centering data point) and the effects of covariates become 
a continuously varying surface [16]. The GWR technique 
has been used to account for the spatial heterogeneity in 
the CO2 emissions at the county level. An evaluation of the 
performance of the GWR modeling technique (particularly 
for the county-level panel data) is important to safety 
researchers. However, none of previous studies have used 
the GWR for the influencing factors of CO2 emission 
analysis at the county level in Inner Mongolia Province. 
The findings can help Inner Mongolia’s government 
agencies select appropriate methods to develop the low-
carbon economy at the county level.

A review of the literature shows that there is very 
limited study on the dynamic impacts between CO2 
emissions, economic growth rate, and other variables in 
Inner Mongolia. Thus, we develop an alternative method 
for the local analysis of relationships in multivariate data 
sets, which we term geographically weighted regression 
(GWR). The application of GWR is a new trial in the 
geographical field. The primary objective of this research 
is the application of the GWR modeling technique to 
evaluate the influencing factors of CO2 emissions at the 
county level. 

Material and Methods

Material

In this study, in order to take into account the variable 
influence of time lag, we selected the 2010-12 arithmetic 
mean values of the variables, which serve to smooth out 
the short-term effects of precipitating factors and present 
a more realistic description of the effects of each city’s 
socio-economic factors on CO2 emissions. The selected 
data is panel data from 101 counties in Inner Mongolia 
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and includes coal, coke, crude, gasoline, kerosene, diesel, 
fuel oil, and gas of final energy consumption data and 
socio-economic indicators, namely GDP, population, 
economic growth rate, urbanization rate, and industrial 
structure, respectively, in 2010-12. The economic growth, 
urbanization rate, and industrial structure indicators are 
calculated by the annual data collected from the Inner 
Mongolia Autonomous Region statistics website. The 
total energy consumption in Inner Mongolia Province’s 
industrial sector and social economic factors are published 
in the Inner Mongolia Statistics Book (2010-12) [17-19].

Description of Regression Variables

Our study uses annual time series data from 2010 to 
2012 for 101 counties of Inner Mongolia as obtained from 
the Inner Mongolia Statistics Book (2010-12) [17-19]. 
In the study we define CO2 emissions as the dependent 
variable and GDP, economic growth rate, urbanization 
rate, and population and industrial structure as explanatory 
variables. The CO2 emissions are estimated by the IPCC 

[20], and the economic growth rate is calculated by 
averaging the gross domestic products of 2010, 2011, 
and 2012. This indicator is a good measure of a region’s 
economic development, as economies in different periods 
might demand different sources of energy and energy 
efficiency. The urbanization rate is defined as the ratio of 
urban population to the total population and the industrial 
structure is defined to the ratio of secondary industry GDP 
and tertiary industry GDP.

Calculation of CO2 Emissions

The Intergovernmental Panel on Climate Change 
[20] provided fundamental guidelines and internationally 
unified standards of assessment for CO2 emissions from 
greenhouse gases [21]. The IPCC method was used to 
calculate the statistical CO2 emissions from the energy 
consumption of Inner Mongolia’s industrial sector. The 
carbon emission coefficient method is good applicability 
for not enough detailed statistical data. All kinds of energy 
consumption within a study area during a certain period 
are multiplied by the corresponding carbon emission 
coefficients and are then summed up. We can obtain the 
CO2 emissions of energy consumption in the study area 
over the study period. The formula is as follows: 

i

n

i
i cEC ×= ∑

=1                          (1)

…where C represents CO2 emissions (104t), Ei  represents 
the stand coal consumption of energy type i (tce), Ci  
represents the effective CO2 emission coefficient of each 
energy type (t/tce), and i represents types of energy such 
as raw coal, coke, crude oil, gasoline, kerosene, diesel oil, 
fuel oil, and natural gas. According to the IPCC guidelines, 
various types of fuel consumption can be converted to 
standard coal consumption based on the calorific value 

of each fuel type. The conversion coefficients of power 
generation coal to standard coal consumption (SCE) and 
CO2 emission coefficient for different energy types are 
listed in Table 1.

CO2 emissions are calculated by final energy con-
sumption and CO2 emissions coefficients during 2003-12.

Geographically Weighted Regression Model

In recent years, multiple regression models have 
been widely used in geographic analysis. The global 
regression model assumes that different regions of the 
explanatory power of the independent variable on the 
dependent variable are the same, which indicates that 
there is no change in the relationships between them 
according to their location [22]. Moreover, recent studies 
have shown that the relationships between spatially 
distributed environmental variables can vary across 
geographical space [12-13]. However, variations or spatial 
non-stationarity in relationships between the dependent 
and independent variables over space commonly exist 
in spatial data sets and the assumption of stationarity or 
structural stability over space may be unreliable [13].

In the geographically weighted regression model, the 
estimation of regression coefficients does not use global 
information and instead uses neighborhood information 
to estimate the local regression coefficient, which changes 
with spatial location. Furthermore, the GWR offers the 
possibility to promptly generate maps integrating diverse 
spatial information and visualize how potential radon 
factors influence changes over geographical space (Fig. 1).

Table 1. The standard coal and CO2 coefficients of different types 
of energy.

Energy type
Standard 

coefficient
CO2 emission 

coefficient
kg/kg kg/kg

Coal 0.6248 2.21

Coke 0.9714 3.14

Crude oil 1.4286 2.76

Gasoline 1.4714 2.2

Kerosene 1.4714 2.56

Diesel oil 1.4571 2.73

Fuel oil 1.4286 2.98

Nature gas 12.143 2.09

Fig. 1. Display of geographically weighted regression models.
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As a local regression technique, GWR is an extension 
of the global regression technique:

              (2)

…where yi, yik, and εi represent the dependent variable, 
the independent variables, and random error term at 
different spatial points (the subscripts i and k stand 
for the spatial locations and the independent variable 
number, respectively); β0 is the model intercept; and βk  
is the slope coefficient for kth independent variable. This 
type of model is aspatial, i.e., no geographical location 
information is considered in the estimation of the model 
parameters, and all parameters are averages across the 
whole data set. Calibrating equation (2) would appear to 
be problematic because there are more unknowns than 
observed variables.

The GWR model extends the conventional global 
regression by adding a geographical location parameter. 
The model is rewritten as:

(3)

…where yi is the dependent variable in the ith location (in 
this case CO2 emission i at location i), χik is the ith value 
of the kth independent variable, k represents the number 
of independent variables (GDP, industrial structure, 
economic growth rate, urbanization rate, and population), 
i represents the number of counties, εi represents the 
residual, (ui, vi) is the coordinate location of the i sampling 
point, β0 (ui, vi) is the continued function, and a βk (ui, vi) is 
the value at the i  point.

According to formula (3), the regression parameters 
of the geographically weighted regression model are 
different from the values in different sampling points. The 
total number of unknown parameters is n * (p + 1), and 
the observational data is only n. A general estimation of 
parametric regression methods cannot solve this problem. 
According to Tobler’s first law, geographical phenomena 
situated in geographical space near each other are likely to 
show more similar characteristics than points situated far 
away from each other [23]. 

Accordingly, Brunsdon proposed the following 
problem-solving idea based on previous research [24]: For 
sampling point i, select the point of sampling points and the 
surrounding neighborhood as an observation to establish 
the overall regression model and use the principle of 
least squares to obtain the point of regression parameters. 
Similarly, the regression parameters of the other point can 
be obtained using the same method.

We assume that wij is the weight value of ith and 
sampling point j. The ith of the regression parameters in 
the GWR model can be calibrated using the weighted least 
squares approach.

           (4)

We estimate it by the formula into minimum.
In matrix form, βi = [βi0βi1....βip], Wi = diag(wi1, 

wi2,...,win) and these parameters at each location i are 
estimated by the equation:

( ) yWXXWX iii
'1'ˆ −=β                  (5)

The most important aspect of the GWR model is 
how to decide the spatial weighting matrix, which can be 
calculated using many different methods. In this study, the 
weight of each point can be calculated by applying the 
Gaussian function [15]. This paper uses an adaptive bi-
square function to generate the geographic weights:

2 2[1 ( / ) ]

0
ij ij

ij
ij

d b d b
w

d b

 − ≤= 
>          (6)

… where wij is the weight of location j in the space 
at which data are observed in order to estimate the 
dependent variable at location i, b is referred as bandwidth, 
and dij  is the distance between the ith and jth locations 
(namely the spatial geography distance between ith county 
and jth county in this study). This spatial geography 
distance is calculated by the longitude and latitude of each 
county.

Selecting the weighting function and optimal 
bandwidth depends on the parameter of data number of 
neighborhoods by comparing the performance of GWR 
and OCK. When processing the GWR regression models, 
weights and bandwidths decreased in the densely sampled 
places and increased in the sparsely sampled places. In 
this study, the adaptive method was employed to calculate 
kernels of GWR [13]. The parameter estimates under the 
GWR model can be solved by using a weighting scheme 
from a Kernel function that provides the most weight to 
locations closest in space to the focal location [13].

Results and Discussion

The Statistics of CO2 Emissions 
and Each Variable

There is a significant difference between the spatial 
pattern of CO2 emissions and socio-economic factors 
of Inner Mongolia’s 101 counties. Table 2 presents the 
quantitative statistics of CO2 emissions and five socio-
economic factors. The distribution of CO2 emissions 
and influencing factors varied significantly across all 
of Inner Mongolia (Table 2). In addition, the maximum 
and minimum values of monthly mean temperature and 
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CO2 emissions were greatly different as well. The CO2 
emissions of some counties were lower than 0.0002 
million tons; emissions of other counties were as high as  
69.99 million tons (emissions among the counties ranged 
from 0.00002 million tons to 69.99 million tons). The 
average CO2 emissions are 5.05 million tons. The average 
GDP of each county in Inner Mongolia is 17.51 billion 
CNY. A significant wealth gap is present in Inner Mongolia 
and the highest GDP among the counties is 100.04 billion 
CNY, while the lowest is 1.27 billion CNY.

Spatial Distribution of Each Variable Based 
on ARCGIS

The five attributable indexes of data of this study and 
relevant statistics on cross-section data were obtained in 
accordance with county-level cities. Before the GWR 
modeling, a statistical description of each variable, 
preliminary understanding of the regional distribution, and 
spatial autocorrelation of these variables were necessary. 
This statistical descriptive analysis was achieved using 
ARCGIS software.

The Distribution of CO2 Emissions

Fig. 2 shows that the average CO2 emissions for a 
county in Inner Mongolia Province is 0.0463 million tons 
and the highest CO2 emissions were recorded in Etuokeqi 
County. The counties with the next highest CO2 emissions 
are mainly concentrated in the Huhhot and Baotou areas, 
which are the traditional industrial regions of Inner 
Mongolia. Due to rapid economic development, there is 
a high demand for energy and the energy consumption 
structure of our province is mainly comprised of coal, 
thus resulting in high levels of CO2 emissions. However, 
emissions in central, eastern, and western parts of the 
whole region are below the provincial average value. 
The county with the lowest levels of CO2 emissions is 
Hengxiangbaiqi County because it contains the grasslands 
and typical forests of Inner Mongolia, which are less 
developed economically, and its population abides by the 
traditional nomadic way of life. Consequently, the demand 
for energy is very low.

The Distribution of GDP

Table 2 and Fig. 2 reveal that the average GDP in 
Inner Mongolia is 15,012.18 million CNY and the highest 
GDPs are mainly concentrated in the southwest corner of 
Inner Mongolia. Baotou Kundulun District has the highest 
GDP, mainly because the regional economy is relatively 
developed and coal mining and the steel industry are 
concentrated here. However, GDP is lowest in the eastern 
and western regions of Inner Mongolia – far below the 
average level. The GDP in Aershan county of Hulunbeier 
League is the lowest. This area is a developing region 
where primary and tertiary industries concentrate.

The Distribution of Population

Fig. 2 indicates that population density is highest in the 
northeast region, and the most populous city is Tongliao in 
Keorqin County. This area is characterized by rich water 
resources, mild weather conditions, and flat terrain, and it is 
relatively developed to meet the basic needs of human life. 
The population density in the Western Region is lowest, 
and the least populous city is Ejinaqi in Alashan League. 
This area is characterized by poor weather conditions, a 
shortage of water resources, frequent drought, terrain 
desertification, and insufficient natural resources, and 
consequently has a low population.

The Distribution of Industrial Structure

From Table 2 and Fig. 2, we found that the average 
industrial structure of a county in our province is 2.29. 
The industrial structure in Wulatezhongqi is as high as 8.9, 
which shows that the proportion of secondary industry 
almost is almost four times that of tertiary industry. 
The counties with high industrial structures are mainly 
concentrated in the western and central regions, which are 
the traditional industrial districts in Inner Mongolia. This 
indicates that the industrial structure in Inner Mongolia 
is the typical rough development type and needs to be 
improved. The proportion of industrial output in the 
Eastern regions is much lower than other areas, and the 
urban industrial structure in Xincheng District is at least 
0.15. The industrial structure in the eastern areas is below 

Table 2. The mean, standard, minimum, and maximum percentages of 25, 50, and 75 percent of CO2 emission volumes and each variable.

Variables Mean STD Min 25% 50% 75% Max

CO2 emissions 
(million t) 5.05 9.71 0.0002 0.25 0.80 6.08 69.99

GDP (billion CNY) 17.51 19.36 1.27 5.81 10.35 21.24 100.04

Economic growth rate (%) 13 3.44 4.2 11.1 13.3 15.1 24.9

Industrial structure (%) 2.42 1.77 0.2 1.3 1.9 3.1 9.4

Population (104) 
(million people) 24.86 16.74 1.79 10.9 23.26 33.95 88.96

Urbanization rate (%) 49.7 28.52 8.34 22.27 49.97 74.89 100
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the provincial average, and increasing development should 
be promoted.

The Distribution of Urbanization Rate

From Table 2 and Fig. 2 we know that the average 
urbanization rate is 50% and the urbanization rate reaches 
up to 100% in Genhe city in Baiyunkuang and Wuda 
counties. The areas are characterized by low economic 
development, resulting in a high rate of urbanization. 
In contrast, the urbanization rate is low in Keyouqianqi 
because these areas are economically underdeveloped 
and urban development is rather backward. It also 
demonstrates that developing the economy is a necessity 
in the western region.

The Distribution of Economic Growth Rates

Fig. 2 shows that the average economic growth rate 
at county level is 13.96 and the spatial distribution of 
economic growth rate is relatively uniform throughout 
the province. The economic growth rates in the east and 
southeast are relatively high, such as in Huolinguole, 
which is more than 33 times the average. This has resulted 
in rapid economic development. However, economic 
growth in the central region is low, such as the economic 
growth rate of Liangcheng County at -9.7. There are 
great disparities in economic development throughout the 
province.

Spatial Autocorrelation of Each Variable 
Based on GEODA

In this paper, global and local Moran I indices were used 
to evaluate the spatial patterns of each variable and CO2 
emissions in Inner Mongolia based on GEODA software. 
The global Moran I index mainly reflected the nationwide 
spatial correlation between different geographical regions, 
while the local Moran I index mainly reflected the local 
similarities and variations between neighboring regions. 

Fig. 2. The spatial distribution of each variable, namely CO2 emissions, GDP, population, industrial structure, urbanization rate, and 
economic growth rate, respectively.

Fig. 3. Spatial autocorrelation testing for CO2 emissions.
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The ranges of both global and local Moran indices were 
from 0 to 1. The positive values indicated the degree of 
similarities while negative values indicated the degree of 
differences. Zero values indicated no spatial correlation.

The spatial autocorrelation of the explanatory variables 
and CO2 emissions was applied to GeoDA software and 
the results are shown in Figs 3-4 and Table 3. Fig. 4 
reveals that the corresponding p value is 0.081, indicating 
that the CO2 emissions do not exhibit positive correlation 
under the confidence level at 0.001 or 0.005. The spatial 
autocorrelation for the other explanatory variables use the 
same method. The result is shown in Table 3.

We found that there are positive relationships 
among GDP, industrial structure, economic growth 
rate, population, and urbanization rates. We use spatial 
econometric methods to analyze the spatial heterogeneity 
of these variables. Spatial correlation of CO2 emissions is 
not significant, indicating that the county’s CO2 emissions 
do not exist as significantly positively correlated over 
space.

Test for Multi-Collinearity

The strong multi-collinearity among variables may 
produce biased parameter estimates and generate too much 
standard error of the regression coefficients, which makes 
the model unstable and statistical inference invalid [25]. 
The OLS regression (ordinary least square, OLS) model 
can exclude the dependent variable itself by the correlation 
coefficient matrix, which has little contribution and strong 
multi-collinearity on independent variable, according 
to tolerance coefficient and the variance inflation factor 
(VIF) test [26]. In this paper we use the OLS regression 
model based on ARCGIS software to test the multi-

collinearity and exclude multiple potential collinearity 
using GWR model regression. Generally, severe 
collinearity exists when VIF>10, moderate collinearity 
exists when 5<VIF<10, and mild collinearity exists when 
2<VIF<5 [26]. Table 4 shows that the VIF values of all 
explanatory variables are less than 5, indicating that 
there is lower collinearity among these variables, which 
could be incorporated into spatial econometric analysis of 
geographically weighted regression models.

Geographically Weighted Regression 
Analysis 

In this study, CO2 emissions were regarded as the 
dependent variable, and certain influencing factors – 
namely GDP, economic growth rate, industrial structure, 
urbanization rate, and population – were designated as the 
independent variable on the basis of the 101 county units 
of Inner Mongolia in 2012.

Because of the low correlation coefficient between 
these five elements, they can be analyzed by geographically 
weighted regression models. The GWR local estimation 
coefficient reveals the complex relationships between 
influencing factors and CO2 emissions in the region. The 
impact of each of these factors on CO2 emissions changes 
with location and whether the regression coefficient is 
negative or positive. In order to complement the drive 
mechanism more efficiently, the model calculates the 
influencing factor regression coefficients of three years 
and uses the ArcGIS 10.2 software spatial visualization 
module to analyze the effects of influence factors on CO2 
emissions in Inner Mongolia and its spatial difference.

Spatial Variability of GDP Impact 
on CO2 Emissions

In this paper, we choose GDP as an important 
indicator of economic development. As shown in Fig. 5, 

Fig. 4. The significant tests for CO2 emissions using Moran I 
coefficients in Inner Mongolia. 

Table 3. Moran coefficients of each variable.

CO2 
emissions GDP   Economic growth 

rate Industrial structure Urbanization rate Population

Moran’s coefficient 0.0725 0.4133 0.328 0.2118 0.4427 0.4214

Confidence level 
(%) 91.9% 99.90% 99.9% 99.8% 99.9% 99.9%

Table 4. VIF value of variables.

Variables VIF value

GDP 1.795

Industrial structure 1.336

Population 2.065

Urbanization rate 1.612

Economic structure 1.116



2648 Wu R., et al.

there exists a positive correlation between GDP and CO2 
emissions. GDP is representative of wealth (specifically at 
the economic development level) and is one of the most 
important factors affecting carbon emissions. The higher 
the GDP, the greater the amount of CO2 emissions. The 
degree of influence is the highest in the east and west, 
and the weakest in the central part of Inner Mongolia. It 
is conceivable that rapid economic development signifies 
high rates of economic growth at the expense of elevated 
levels of CO2 emissions. If the economic development 
is sustained by such means, it will inevitably lead to 
a vicious economic circle. Therefore, the eastern and 
western regions should develop regional economies 
according to local characteristics and advantages in order 
to obtain a favorable benefit-to-cost ratio. We should adopt 
the scientific “green GDP” indicator to change the type of 
economic development in the eastern regions.

Spatial Variability of Industrial Structure Impact 
on CO2 Emissions

Fig. 5 shows that there is a negative correlation 
between industrial structure and CO2 emissions of 21 
counties in the Xilingol League and Chifeng, which 
indicates that the ratio of secondary industry to tertiary 
industry is low, and specifically that the industrial 
structure is mainly dominated by primary and tertiary 
industries. The economic development of these regions 
is rather backwards and the dominance of traditional 
pastoral life implicates a low demand for energy as well 
as the landscape being in its natural condition, resulting in 

a strong limiting effect on CO2 levels. There is a positive 
correlation between industrial structure and CO2 emissions 
in the other 80 counties, including Huhhot and Baotou. 
These county-level economic development types that are 
dominated by secondary and tertiary industrial structures 
have a significant positive impact on CO2 emissions, 
suggesting that a large proportion of secondary and the 
tertiary industry were not fundamentally developed 
according to the extensive economic development 
type, resulting in higher CO2 emissions. Therefore, the 
province should improve energy efficiency by altering the 
economic development type from the extensive economic 
growth type to intensive economic development type – the 
inevitable option for our province.

Spatial Variability of Economic Growth Rate 
Impact on CO2 Emissions

As shown in Fig. 6, there exists a negative correlation 
between economic growth rate and CO2 emissions in the 
Xinan, Zhelimu, Hulunbeier, Xilinguole, and Chifeng 
leagues. In all other leagues there is a positive correlation 
between economic growth rate and CO2 emissions. From 
spatial distribution of regression coefficients in each 
year, we know that regression coefficients increase from 
northeast to southwest, where the highest value is located. 
This mainly delineates the industrial area of our province 
where economic development is faster. As a result of 
economic development, the demand for energy is higher 
than other regions and the resulting CO2 emissions in that 
region will be greater.

Fig. 5. Spatial distribution of regression coefficients of GDP and industrial structure based on GWR models in 2010, 2011, and 2012.
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Spatial Variability of Urbanization Rate Impact 
on CO2 Emissions

There is a positive correlation between urbanization 
rate and CO2 emissions. Fig. 6 deduces the impact of 
urbanization rate on CO2 emissions given the fact that 
the spatial distribution of urbanization rate becomes 
stronger moving from the eastern region to the western 
region. The impact of urbanization rate on CO2 emissions 
is the strongest in the western region, mainly because 
this area is the province’s major industrial zone; in 
addition, the economic development model still retains 
the extensive economic growth pattern, and economic 
development is mainly characterized by secondary 
industries with high energy consumption and pollution. 
The impact of urbanization rate on CO2 emissions is 

the weakest in the eastern region, which shows that the 
economic development pattern of eastern area is gradually 
changing from extensive development type into intensive 
development type, and that economic development 
features of these areas mainly consist of primary and 
tertiary industries that have low energy consumption. 
With the improvement of urbanization rate continually, 
the CO2 emissions of these areas does not increase and 
actually may exhibit a decrease due to improvements in 
energy efficiency.

Spatial Variability of Population Impact 
on CO2 Emissions

There is a positive correlation between population and 
CO2 emissions. Populations in all regions have a significant 

Fig. 6. Spatial distribution of regression coefficients of economic growth rate and urbanization rate based on GWR models in 2010, 2011, 
and 2012.

Fig. 7. Spatial distributions of regression coefficients of population based on the GWR model in 2010, 2011, and 2012.
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positive impact on CO2 emissions, and fast population 
growth results in increased emissions. Currently, with 
the rapid increase of the province’s population and the 
improvement of quality of life, the demands for energy 
have increased substantially. We need to meet the demand 
for energy caused by an increasing population, which can 
lead to increased CO2 emissions. Inner Mongolia should 
decrease the CO2 emissions caused by population growth 
by improving energy efficiency. From the perspective 
of spatial variation of the regression coefficients, the 
population has a greater influence on CO2 emissions in the 
central and western regions of Inner Mongolia than the 
eastern region. The population impact on CO2 emissions 
extending from the northeast to the southwest has the 
same spatial distribution in the years 2010, 2011, and 2012 
(as shown Fig. 7).

Conclusions

We applied the geographically weighted regression 
(GWR) model calibrated to explore the spatially varying 
relationships between CO2 emissions and explanatory 
variables in 2010, 2011, and 2012.

The general spatial pattern shows that CO2 emissions 
and the five influencing factors of 101 counties in 
Inner Mongolia have a strong positive correlation and 
significant spatial heterogeneity. The areas with high CO2 
emissions are concentrated in industrial and economically 
developed regions such as Hohhot and Baotou, while 
emissions are low in areas such as the northeastern 
prairie and forest areas. The Moran I tests showed that the 
spatial autocorrelation of CO2 emissions and explanatory 
variables are positive over counties. The results also 
showed that the GWR successfully captured the spatially 
non-stationary relationships between CO2 emissions and 
influencing factors at the county level in Inner Mongolia. 
The parameters of variables in the GWR varied spatially, 
suggesting that the effects of influencing factors on CO2 
emissions were different between counties. Overall, 
population, GDP, and urbanization rate have a positive 
effect on CO2 emissions while the industrial structure 
and economic growth rate has both positive and negative 
effects on emissions. We characterized the fact that varying 
industrial structures and economic growth rates result in 
different effects on the emissions of various regions.

The GWR model in current research attempts to 
investigate the influencing factors and CO2 emissions as 
a complement to global regression models. The estimated 
parameters by GWR can depict more realistic spatial 
relationships between CO2 emissions and influencing 
factors at different locations with higher confidence. One 
of the deficiencies of the GWR model is that it assumes 
spatial non-stationarity for all variables, when in reality 
some natural processes may exhibit spatial stationarity, 
especially in homogeneous regions [27]. In the future, some 
improvements have been proposed to further enhance the 
explanatory power and generalization of the GWR model. 
At present, most research for panel data empirical analysis 

assumes this for each set. The panel data of sectional units 
are homogeneous, namely there is no difference between 
the regions. Additionally, conventional global statistics 
assume one relationship for the entire study extent, and 
are not designed to consider whether a relationship varies 
across space. In fact, there is instability and heterogeneity 
among most panel data. 

The geographically weighted regression model mainly 
applies to the existence of spatial heterogeneity of panel 
data and empirical analysis results explain the spatial 
heterogeneity problem by a geographically weighted 
regression model. One advantage of this alternative 
technique is that it is based on the traditional regression 
framework with which most readers will be familiar. 
Another advantage is that it incorporates local spatial 
relationships into the regression framework in an intuitive 
and explicit manner [13]. The other advantages of the 
GWR model is the convenience of the technique that has 
been built into the ‘‘GWRx3.0’’ software package. In 
addition, limited data availability has restricted the long-
term analysis of CO2 emissions of the 101 counties in Inner 
Mongolia. For future studies, we can obtain more accurate 
data by visiting statistics or relevant administrative 
departments. The calculation of CO2 emissions uses the 
formula and CO2 emission coefficients, which are provided 
by the 2006 IPCC guidelines for national greenhouse gas 
inventories, which fails to consider the differences of CO2 
emission coefficients caused by regional differences. 

Although this method is simple and easy to operate, 
it is extensive and does not take into account the regional 
differences in energy consumption and energy technology. 
The planned analysis of the impact of 11 influencing factors 
on final energy use for CO2 emissions had to be reduced 
to five factors because of a lack of annual data. Therefore, 
due to the resolution limit of currently used geological 
and stream sediment geochemical datasets, only general 
and regional influencing factors of CO2 emissions (i.e., 
GDP, industrial structure, and population) are discussed. 
For individual deposits, other factors that may specifically 
contribute to the emissions of CO2 (e.g., CO2 intensity, 
energy structure, etc.) should be investigated as well. 

Therefore, in order to further facilitate analysis, more 
detailed influencing factors identified from other sources 
of geo-datasets will be included in our future research. In 
spite of this, this study is the first attempt to analyze the 
spatial heterogeneity between CO2 emissions and other 
explanatory variables such as industrial structure, GDP, 
population, and the economic structure of 101 counties in 
Inner Mongolia. According to the discussion above, the 
results obtained from this study reasonably assess and 
meaningfully support efforts to control CO2 emissions in 
the industrial sector of Inner Mongolia Province.
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